La@C₈₂ Anion. An Unusually Stable Metallofullerene

Takeshi Akasaka,*,*,‡ Takatsugu Wakahara,* Shigeru Nagase,*,§ Kaoru Kobayashi,§ Markus Waelchli,⊥ Kazunori Yamamoto," Masahiro Kondo,† Shingo Shirakura,† Shingo Okubo,† Yutaka Maeda,† Tatsuhisa Kato,‡ Masahiro Kako,^{\$} Yasuhiro Nakadaira,^{\$} Ritsuko Nagahata,[&] Xiang Gao,[#] Eric Van Caemelbecke,[#] and Karl M. Kadish^{*,#}

Graduate School of Science and Technology Niigata University, Niigata 950-2181, Japan Institute for Molecular Science, Myodaiji Okazaki 444-8585, Japan Department of Chemistry, Graduate School of Science Tokyo Metropolitan University, Tokyo 192-0397, Japan Bruker Japan, Tsukuba, Ibaraki 305-0051, Japan Power Reactor & Nuclear Fuel Development Corporation Tokai, Ibaraki 319-1100, Japan Department of Chemistry The University of Electro-Communications Chofu, Tokyo 182-8585, Japan National Institute of Materials and Chemical Research 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan Department of Chemistry, University of Houston Houston, Texas 77204-5641

> Received May 9, 2000 Revised Manuscript Received August 3, 2000

Endohedral metallofullerenes have attracted special interest since their first proposal in 1985.1 Smalley and co-workers showed in 1991 that several lanthanum-containing fullerenes can be produced, and that extraction with toluene yields mostly La@C₈₂.² Since then, La@C₈₂ has been extensively investigated as the prototype of isolable metallofullerenes, but its structure is still unknown.³ Although M@C₈₂ (M = group 3 or lanthanide metals) have been isolated and purified in macroscopic quantities, their instability in air has prevented detailed experimental characterization.4 Here we report that the anion of La@C₈₂ has a unique stability toward air and water. The structure of La@C₈₂ is determined from NMR measurements of the stable anion and density functional calculations.

Bulk controlled potential electrolysis of La@C_{82}^{4b} was used to prepare the anion. No ESR signal was observed at 124 K for La@C $_{82}(-)$, unlike La@C $_{82},^5$ which indicates that La@C $_{82}(-)$ is diamagnetic. The anion of the second isomer^{4c} was also highly

T.; Shiromaru, H.; Saito, K.; Ikemoto, I.; Achiba, Y. Chem. Phys. Lett. 1993, 216, 67. (b) Yamamoto, K.; Funasaka, H.; Takahashi, T.; Akasaka, T. J. Phys. *Chem.* **1994**, *98*, 208. (c) Yamamoto, K.; Funasaka, H.; Takahashi, T.; Akasaka, T.; Suzuki, T.; Maruyama, Y. J. Phys. Chem. **1994**, *98*, 12831.

(5) Johnson, R. D.; de Vries, M. S.; Salem, J.; Bethune, D. S.; Yannoni, C. S. Nature 1992, 355, 239.

La@C₈₂ La@C_{\$7}(-) -Absorbance (arb. units) 1200 1400 600 800 1000 1600 Wavelength (nm)

Figure 1. Vis-near-IR absorption spectra of La@C₈₂, La@C₈₂(-), and $La@C_{82}(+).$

stable and diamagnetic. The cations of two La@C₈₂ isomers were prepared and isolated in the same way. To our knowledge, these are the first examples for the isolation of reduced or oxidized forms of M@C₈₂.⁶ As an extension, we have also prepared the anion and cation of two Pr@C₈₂ isomers that were recently purified.7

The absorption spectra of La@C₈₂, La@C₈₂(-), and La@C₈₂-(+) are shown in Figure 1. La@C₈₂ shows broad absorption bands over the entire near-IR region down to 2300 nm⁴ because of its open-shell electronic structure, described formally as La3+C823-.8 A significant color change from dark brown to dark green was observed during reduction of La@C₈₂. La@C₈₂(-) has an onset of a band around 1600 nm, a near-IR band at 930 nm, and a broad visible band at 580 nm. The color and absorption spectrum of La@ $C_{82}(-)$ did not change after 4 months in air, while those of La@C₈₂(+) was invariant for only several hours at room temperature under argon.

A degassed solution of La@C $_{82}(-)$ in *o*-dichlorobenzene was heated in a sealed tube at 170 °C for 10 min, or photoirradiated above 400 nm at 20 °C. In both cases, the absorption spectrum remained unchanged. When the solution was irradiated above 300 nm, the absorption spectrum immediately became featureless. Interestingly, a La@C₈₂ peak appeared in the positive ion FAB mass spectrum of this photolyzed solution, suggesting that dimerization and/or oligomerization occurs during photoirradiation.

The absorption spectrum of $La@C_{82}(-)$ was unchanged not only in water but also in an ODCB solution of phenol ($pK_a =$ 10), thiophenol ($pK_a = 8$), *p*-nitrophenol ($pK_a = 7$), acetic acid $(pK_a = 5)$, and 2,4-dinitrophenol $(pK_a = 4)$. La@C₈₂(-) was oxidized to give La@C82 in an ODCB solution of dichloroacetic acid ($pK_a = 1$).⁹ This suggests that La@C₈₂(-) may survive even in acidic solution (p $K_a \ge 4$).

Because of the difficulty in preparing single crystals, NMR measurements are most useful for structural determination,³ but have not been utilized for La@C₈₂ due to its paramagnetic nature. However, the high stability and diamagnetic nature of La@C₈₂-(-) allow NMR determination of the structure of La@C₈₂. The 139 La NMR spectrum of La@C₈₂(-) exhibits a single peak in

Niigata University.

[‡] Institute for Molecular Science.

[§] Tokyo Metropolitan University.

[⊥] Bruker Japan.

^{II} Power Reactor & Nuclear Fuel Development Corporation.

^{\$} The University of Electro-Communications.

[&]amp; National Institute of Materials and Chemical Research.

[#] University of Houston.

⁽¹⁾ Heath, J. R.; O'Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H.

<sup>W.; Tittle, F. K.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 7779.
(2) Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.;</sup>

⁽²⁾ Chai, F.; Guo, F.; Jin, C.; Hauller, K. E.; Chioanie, L. F. F.; Fure, J.;
Wang, L.; Alford, J. M.; Smalley, R. E. J. Phys. Chem. 1991, 95, 7564.
(3) For recent reviews, see: (a) Bethune, D. S.; Johnson, R. D.; Salem, J.
R.; de Vries, M. S.; Yannoni, C. S. Nature 1993, 366, 123. (b) Nagase, S.;
Kobayashi, K.; Akasaka, T. Bull. Chem. Soc. Jpn. 1996, 69, 2131. (c) Nagase,
S.; Kobayashi, K.; Akasaka, T. J. Comput. Chem. 1998, 19, 232. (d) Nagase,
S.; Kobayashi, K.; Akasaka, T.; Wakahara, T. In Fullerenes: Chemistry, Physics and Technology; Kadish, K., Ruoff, R. S., Eds.; John Wiley & Sons: New York, 2000; pp 395–436.
 (4) (a) Kikuchi, K.; Suzuki, S.; Nakao, Y.; Nakahara, H.; Wakabayashi,

⁽⁶⁾ It has recently been reported that the reduction of Gd-metallofullerenes forms a mixture of the corresponding anions in solution. Diener, M. D.; Alford, J. M. Nature 1998, 393, 668

⁽⁷⁾ Akasaka, T.; Okubo, S.; Kondo, M.; Maeda, Y.; Wakahara, T.; Kato, T.; Suzuki, T.; Yamamoto, K.; Kobayashi, K.; Nagase, S. Chem. Phys. Lett. 2000, 319, 153

⁽⁸⁾ Kobayashi, K.; Nagase, S. Chem. Phys. Lett. 1998, 282, 325.

⁽⁹⁾ The oxidative process from $La@C_{82}(-)$ to $La@C_{82}$ may involve an intermediacy of $La@C_{82}H$ followed by oxidation.

Figure 2. (a) ${}^{13}C$ NMR spectrum of La@C₈₂(-) and (b) its expanded views.

 d_4 -ODCB at 300 K with a line width of ~2600 Hz. The chemical shift at -470 ppm is close to that at -403 ppm observed for La₂@C₈₀.¹⁰ This may suggest that La has a similar formal charge in La@C₈₂(-) and La₂@C₈₀.^{8,11}

The C₈₂ fullerene has nine distinct isomers (C_{3v} (a), C_{3v} (b), C_{2v} , C_2 (a), C_2 (b), C_2 (c), C_s (a), C_s (b), and C_s (c)) that satisfy the isolated pentagon rule¹² (see ref 13 for these structures). Since the ${}^{13}\text{C}$ NMR study of C_{82} shows only one isomer with C_2 symmetry is abundantly produced,14 it was once assumed that La was encapsulated inside the abundant isomer. Because of the three-electron transfer from La to C₈₂, however, it was recently predicted that encapsulation of La inside the $C_{2\nu}$, $C_{3\nu}$ (b), or C_s (c) isomers is energetically much more favorable, which leads to C_{2v} , C_{3v} , and C_s symmetry, respectively.⁸ These endohedral structures have 24 [17(4) + 7(2)], 17 [11(6) + 5(3) + 1(1)], and 44 [38(2) + 6(1)] nonequivalent carbons, respectively, where the value in parentheses is the relative intensity. As Figure 2 shows, the 125 MHz ¹³C NMR spectrum of La@C₈₂(-) exhibits 17 distinct lines of near-equal intensity and 7 lines of half the intensity, verifying clearly that La@C₈₂ has C_{2v} symmetry. This agrees with the fact that the C_{2v} structure is energetically most stable.8

The $C_{2\nu}$ structure of La@C₈₂ was optimized at the BLYP level¹⁵ and identified as an energy minimum from frequency calculations. As Figure 3 shows, La@C₈₂ is most energetically stabilized when La approaches the center of one hexagonal ring in C₈₂ along the C_2 axis. This is consistent with the EXAFS study of La@C₈₂

Figure 3. Two views of the optimized structure of $La@C_{82}(C_{2v})$.

Figure 4. Orbital diagrams in eV.

which shows that the number of nearest neighbor carbons is six.¹⁶ The same was calculated at the BLYP level for $La@C_{82}(-)$ and $La@C_{82}(+)$, confirming that $La@C_{82}$ maintains $C_{2\nu}$ symmetry even upon reduction and oxidation. The distances between La and the hexagonal carbons were calculated to be 2.638 and 2.646 Å for $La@C_{82}$. These differ little from those of 2.636 and 2.643 Å for $La@C_{82}(-)$ and 2.640 and 2.649 Å for $La@C_{82}(+)$, suggesting that the La position is only little changed upon either reduction or oxidation.

As Figure 4 shows, La@C₈₂ has an open-shell structure. Reduction and oxidation take place on the carbon cage of La@C₈₂,¹⁷ leading to a closed-shell electronic structure of La@C₈₂(-) and La@C₈₂(+). Therefore, these ions have no radical character, as confirmed by the ESR study. This is consistent with the fact that La@C₈₂(-) is air-insensitive. The observation that La@C₈₂(+) is less stable in air than La@C₈₂(-) is probably due to the lower LUMO level of La@C₈₂(+).

In conclusion, La@C₈₂ becomes diamagnetic and remarkably stable due to the closed shell structure obtained upon reduction. The ¹³C NMR spectrum of the anion reveals that La@C₈₂ has $C_{2\nu}$ symmetry. ¹³C NMR measurements of paramagnetic metallofullerenes in anionic forms may be widely applicable for structural determination.¹⁸ Isolation of anionic metallofullerenes is a stepping-stone on the way to developing biological applications and new materials.

Acknowledgment. This work was supported in part by a grant from the Asahi Glass Foundation and by a grant from the Ministry of Education, Science, Sports, and Culture of Japan. K.M.K. also acknowledges support of the Robert A. Welch Foundation (Grant E-680).

Supporting Information Available: Preparation and spectroscopic data of the anion and cation of La@C₈₂ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁰⁾ Akasaka, T.; Nagase, S.; Kobayashi, K.; Waelchli, M.; Yamamoto, K.; Funasaka, H.; Kako, M.; Hoshino, T.; Erata, T. Angew. Chem., Int. Ed. Engl. **1997**, *36*, 1643.

⁽¹¹⁾ Kobayashi, K.; Nagase, S.; Akasaka, T. Chem. Phys. Lett. 1995, 245, 230.

⁽¹²⁾ Fowler, P. W.; Manolopoulos, D. E. An Atlas of Fullerenes; Clarendon: Oxford, 1995.

⁽¹³⁾ Kobayashi, K.; Nagase, S. Chem. Phys. Lett. 1997, 274, 226.

⁽¹⁴⁾ Achiba, Y.; Kikuchi, K.; Aihara, Y.; Wakabayashi, T.; Miyake, Y.; Kainosho, M. Mater. Res. Soc. Symp. Proc. **1995**, 359, 3.

⁽¹⁵⁾ For the BLYP method, see: (a) Becke, A. D. *Phys. Rev.* **1988**, *A38*, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev.* **1988**, *B37*, 785. For the relativistic effective core potential on La, see: Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, *82*, 299. The basis sets employed were (5s5p3d)/[4s4p3d] for La and 3-21G for C. All calculations were carried out using the Gaussian 98 program.

JA001586S

⁽¹⁶⁾ Nomura, M.; Nakao, Y.; Kikuchi, K.; Achiba, Y. Physica B 1995, 208&209, 539.

⁽¹⁷⁾ It is also supported by the fact that the charge density of 2.73 on La for La@C₈₂ differs little from those of 2.75 for La@C₈₂(-) and 2.72 for La@C₈₂(+).

⁽¹⁸⁾ For the X-ray powder diffraction study of $Sc @C_{82}$ and $Y@C_{82}$ using the Maximum Entropy Method, see: (a) Nishibori, E.; Takata, M.; Sakata, M.; Inakuma, M.; Shinohara, H. *Chem. Phys. Lett.* **1998**, 298, 79. (b) Takata, M.; Umeda, B.; Nishibori, E.; Sakata, M.; Saito, Y.; Ohno, M.; Shinohara, H. *Nature* **1995**, 377, 46.